Thromboxane A synthase-independent production of 12-hydroxyheptadecatrienoic acid, a BLT2 ligand.
نویسندگان
چکیده
12(S)-hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT) has long been considered a by-product of thromboxane A₂ (TxA₂) biosynthesis with no biological activity. Recently, we reported 12-HHT to be an endogenous ligand for BLT2, a low-affinity leukotriene B4 receptor. To delineate the biosynthetic pathway of 12-HHT, we established a method that enables us to quantify various eicosanoids and 12-HHT using LC-MS/MS analysis. During blood coagulation, 12-HHT levels increased in a time-dependent manner and were relatively higher than those of TxB₂, a stable metabolite of TxA₂. TxB₂ production was almost completely inhibited by treatment with ozagrel, an inhibitor of TxA synthase (TxAS), while 12-HHT production was inhibited by 80-90%. Ozagrel-treated blood also exhibited accumulation of PGD₂ and PGE₂, possibly resulting from the shunting of PGH₂ into synthetic pathways for these prostaglandins. In TxAS-deficient mice, TxB₂ production during blood coagulation was completely lost, but 12-HHT production was reduced by 80-85%. HEK293 cells transiently expressing TxAS together with cyclooxygenase (COX)-1 or COX-2 produced both TxB₂ and 12-HHT from arachidonic acid, while HEK293 cells expressing only COX-1 or COX-2 produced significant amounts of 12-HHT but no TxB₂. These results clearly demonstrate that 12-HHT is produced by both TxAS-dependent and TxAS-independent pathways in vitro and in vivo.
منابع مشابه
12(S)-hydroxyheptadeca-5Z, 8E, 10E–trienoic acid is a natural ligand for leukotriene B4 receptor 2
Activated blood platelets and macrophages metabolize prostaglandin H(2) into thromboxane A(2) and 12(S)-hydroxyheptadeca-5Z, 8E, 10E-trienoic acid (12-HHT) in an equimolar ratio through the action of thromboxane synthase. Although it has been shown that 12-HHT is abundant in tissues and bodily fluids, this compound has long been viewed as a by-product lacking any specific function. We show that...
متن کاملTime heals all wounds—but 12-HHT is faster
1008 INSIGHTS | The Journal of Experimental Medicine Chronic nonhealing wounds such as diabetic ulcers are a major problem associated with human disease. In this issue, Liu et al. offer new hope for tackling nonhealing wounds by defining a novel role for the leukotriene B 4 receptor type 2 (BLT2) and its ligand 12-hydroxyheptadecatrienoic acid (12-HHT) in wound healing. They also show that high...
متن کاملEffects of a trans isomer of arachidonic acid on rat platelet aggregation and eicosanoid production.
The addition of a trans isomer of arachidonic acid (20:4 delta 14trans) to rat platelet suspensions inhibited the aggregation induced by 7.5 microM of arachidonic acid. This inhibitory effect of 20:4 delta 14trans was significant at concentrations of 7.5-22.5 microM and the range of inhibition was 20% at an inhibitor/substrate ratio (I/S) 1 to 66% when I/S reached 3. However, the addition of it...
متن کامل12-hydroxyheptadecatrienoic acid promotes epidermal wound healing by accelerating keratinocyte migration via the BLT2 receptor
Leukotriene B4 (LTB4) receptor type 2 (BLT2) is a G protein-coupled receptor (GPCR) for 12(S)-hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT) and LTB4. Despite the well-defined proinflammatory roles of BLT1, the in vivo functions of BLT2 remain elusive. As mouse BLT2 is highly expressed in epidermal keratinocytes, we investigated the role of the 12-HHT/BLT2 axis in skin wound healing processe...
متن کاملBiochemical Characterization of Three BLT Receptors in Zebrafish
The leukotriene B4 (LTB4) receptor 1 (BLT1) is a high affinity receptor for LTB4, a chemotactic and inflammatory eicosanoid. The LTB4 receptor 2 (BLT2) was originally identified as a low affinity receptor for LTB4, and, more recently, as a high affinity receptor for 12-hydroxyheptadecatrienoic acid (12-HHT). The zebrafish BLT receptors have not been previously identified and the in vivo functio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 54 11 شماره
صفحات -
تاریخ انتشار 2013